23 research outputs found

    A multi-resolution approach for adapting close character interaction

    Get PDF
    Synthesizing close interactions such as dancing and fighting between characters is a challenging problem in computer animation. While encouraging results are presented in [Ho et al. 2010], the high computation cost makes the method unsuitable for interactive motion editing and synthesis. In this paper, we propose an efficient multiresolution approach in the temporal domain for editing and adapting close character interactions based on the Interaction Mesh framework. In particular, we divide the original large spacetime optimization problem into multiple smaller problems such that the user can observe the adapted motion while playing-back the movements during run-time. Our approach is highly parallelizable, and achieves high performance by making use of multi-core architectures. The method can be applied to a wide range of applications including motion editing systems for animators and motion retargeting systems for humanoid robots

    An energy-driven motion planning method for two distant postures

    Get PDF
    In this paper, we present a local motion planning algorithm for character animation. We focus on motion planning between two distant postures where linear interpolation leads to penetrations. Our framework has two stages. The motion planning problem is first solved as a Boundary Value Problem (BVP) on an energy graph which encodes penetrations, motion smoothness and user control. Having established a mapping from the configuration space to the energy graph, a fast and robust local motion planning algorithm is introduced to solve the BVP to generate motions that could only previously be computed by global planning methods. In the second stage, a projection of the solution motion onto a constraint manifold is proposed for more user control. Our method can be integrated into current keyframing techniques. It also has potential applications in motion planning problems in robotics

    SkillVis: A Visualization Tool for Boxing Skill Assessment

    Get PDF
    Motion analysis and visualization are crucial in sports science for sports training and performance evaluation. While primitive computational methods have been proposed for simple analysis such as postures and movements, few can evaluate the high-level quality of sports players such as their skill levels and strategies. We propose a visualization tool to help visualizing boxers' motions and assess their skill levels. Our system automatically builds a graph-based representation from motion capture data and reduces the dimension of the graph onto a 3D space so that it can be easily visualized and understood. In particular, our system allows easy understanding of the boxer's boxing behaviours, preferred actions, potential strength and weakness. We demonstrate the effectiveness of our system on different boxers' motions. Our system not only serves as a tool for visualization, it also provides intuitive motion analysis that can be further used beyond sports science

    Spatio-temporal Manifold Learning for Human Motions via Long-horizon Modeling

    Get PDF
    Data-driven modeling of human motions is ubiquitous in computer graphics and vision applications. Such problems can be approached by deep learning on a large amount data. However, existing methods can be sub-optimal for two reasons. First, skeletal information has not been fully utilized. Unlike images, it is difficult to define spatial proximity in skeletal motions in the way that deep networks can be applied for feature extraction. Second, motion is time-series data with strong multi-modal temporal correlations between frames. A frame could lead to different motions; on the other hand, long-range dependencies exist where a number of frames in the beginning correlate to a number of frames later. Ineffective temporal modeling would either under-estimate the multi-modality and variance. We propose a new deep network to tackle these challenges by creating a natural motion manifold that is versatile for many applications. The network has a new spatial component and is equipped with a new batch prediction model that predicts a large number of frames at once, such that long-term temporally-based objective functions can be employed to correctly learn the motion multi-modality and variances. We demonstrate that our system can create superior results comparing to existing work in multiple applications

    PCPP: A MATLAB application for abnormal infant movement detection from video

    Get PDF
    PCPP is an application developed in MATLAB, for the detection of abnormal infant movements associated with cerebral palsy. This system uses 2D skeletal data extracted from videos, and consists of a full pipeline providing data pre-processing, data normalization, feature extraction and classification. Evaluation metrics, such as accuracy, sensitivity, specificity, F1 score and Matthews Correlation Coefficient (MCC), are computed to facilitate full assessment of performance and allow for comparison with other methods from the literature. These evaluations are conducted on the MINI-RGBD and RVI-38 datasets using the code and data provided

    Situational versus pervasive hyperactivity in a community sample

    Get PDF
    Groups of home and school situational hyperactive primary schoolboys identified from the community were compared with pervasive hyperactive and non-hyperactive controls on a wide range of measures. The hyperactive groups tended to persist in the same category over a half-year period. Both situational hyperactive groups had lower measured activity levels than the pervasive hyperactive group and only the latter differed from non-hyperactive controls. Home hyperactivity was characterized by poor family relationships and was not distinguishable from non-hyperactive home-antisocial controls. School hyperactive boys had specific correlates of low intelligence, motor clumsiness, poor reading and academic abilities. Pervasive hyperactive subjects differed from both situational groups in showing a higher percentage of delayed language development. While home hyperactivity has dubious identity, the distinct pattern of external correlates in school and pervasive hyperactivity speak for the need to regard these as separate entities.published_or_final_versio

    Identification of Abnormal Movements in Infants: A Deep Neural Network for Body Part-Based Prediction of Cerebral Palsy

    Get PDF
    The early diagnosis of cerebral palsy is an area which has recently seen significant multi-disciplinary research. Diagnostic tools such as the General Movements Assessment (GMA), have produced some very promising results, however these manual methods can be laborious. The prospect of automating these processes is seen as key in advancing this field of study. In our previous works, we examined the viability of using pose-based features extracted from RGB video sequences to undertake classification of infant body movements based upon the GMA. In this paper, we propose a new deep learning framework for this classification task. We also propose a visualization framework which identifies body-parts with the greatest contribution towards a classification decision. The inclusion of a visualization framework is an important step towards automation as it helps make the decisions made by the machine learning framework interpretable. We directly compare the proposed framework's classification with several other methods from the literature using two independent datasets. Our experimental results show that the proposed method performs more consistently and more robustly than our previous pose-based techniques as well as other features from related works in this setting. We also find that our visualization framework helps provide greater interpretability, enhancing the likelihood of the adoption of these technologies within the medical domain

    A Pose-Based Feature Fusion and Classification Framework for the Early Prediction of Cerebral Palsy in Infants

    Get PDF
    The early diagnosis of cerebral palsy is an area which has recently seen significant multi-disciplinary research. Diagnostic tools such as the General Movements Assessment (GMA), have produced some very promising results. However, the prospect of automating these processes may improve accessibility of the assessment and also enhance the understanding of movement development of infants. Previous works have established the viability of using pose-based features extracted from RGB video sequences to undertake classification of infant body movements based upon the GMA. In this paper, we propose a series of new and improved features, and a feature fusion pipeline for this classification task. We also introduce the RVI-38 dataset, a series of videos captured as part of routine clinical care. By utilising this challenging dataset we establish the robustness of several motion features for classification, subsequently informing the design of our proposed feature fusion framework based upon the GMA. We evaluate our proposed framework’s classification performance using both the RVI-38 dataset and the publicly available MINI-RGBD dataset. We also implement several other methods from the literature for direct comparison using these two independent datasets. Our experimental results and feature analysis show that our proposed pose-based method performs well across both datasets. The proposed features afford us the opportunity to include finer detail than previous methods, and further model GMA specific body movements. These new features also allow us to take advantage of additional body-part specific information as a means of improving the overall classification performance, whilst retaining GMA relevant, interpretable, and shareable features
    corecore